Skip to contents

This chart is designed to allow for quick gap analysis based on all outcome indicators within the same country

Usage

incountry_gap(data, budget, thisoperation_mco)

Arguments

data

RBM QA dataset - expect a few pre-defined variables to works well..

budget

table from results.unhcr.org 4.6.1_Budget_Download.xlsx

thisoperation_mco

which operation plan to chart

Value

list with a plot

Examples

data <- prepare_qa_data(activityInfoTable= "cdn6y40lm87wi522")
budget <- readxl::read_excel( system.file("4.6.1_Budget_Download.xlsx", package = "ProgQA"),  skip = 1)|>  
#budget <- readxl::read_excel( here::here("data-raw", "4.6.1_Budget_Download.xlsx"),  skip = 1)|>
  janitor::clean_names() 
incountry_gap(data,budget, thisoperation_mco = "Brazil ABC" )
#> ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
#>  dplyr     1.1.4      readr     2.1.5
#>  forcats   1.0.0      stringr   1.5.1
#>  ggplot2   3.4.4      tibble    3.2.1
#>  lubridate 1.9.3      tidyr     1.3.1
#>  purrr     1.0.2     
#> ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
#>  dplyr::filter() masks stats::filter()
#>  dplyr::lag()    masks stats::lag()
#>  Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
#> $plot

#> 

incountry_gap(data,budget, thisoperation_mco = "Colombia ABC" )
#> $plot

#> 

incountry_gap(data,budget, thisoperation_mco = "Mexico ABC" )
#> $plot

#>