Skip to contents

Impact Indicators

impact_2_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply calculation
datalist <-  impact_2_2(datalist)
#>  HEA01
#>  HEA02
#>  HEA03
#>  LIGHT01
#>  LIGHT02
#>  LIGHT03
#>  DWA01
#>  DWA02
#>  DWA03a
#>  DWA03b
#>  DWA04
#>  DWE01
#>  DWE02
#>  DWE03
#>  DWE04
#>  DWE05
#>  DWE08
#>  DWE09
#>  HH01

table(datalist[["main"]]$impact2_2, useNA = "ifany")
#> 
#>    0    1 
#> 1492    8

fct_plot_indic_donut(indicator = datalist[["main"]]$impact2_2,
                     iconunicode = "f140") 



## Can get the details as well

table(datalist[["main"]]$electricity, useNA = "ifany")
#> 
#>   0   1 
#> 763 737
fct_plot_indic_donut(indicator = datalist[["main"]]$electricity,
                     iconunicode = "f0e7") 


table(datalist[["main"]]$healthcare, useNA = "ifany")
#> 
#>   0   1 
#> 549 951
fct_plot_indic_donut(indicator = datalist[["main"]]$healthcare,
                     iconunicode = "f479") 


 
table(datalist[["main"]]$drinkingwater, useNA = "ifany")
#> 
#>    0    1 
#>  426 1074
fct_plot_indic_donut(indicator = datalist[["main"]]$drinkingwater,
                     iconunicode = "e006") 


## Check intermediary variables
table(datalist[["main"]]$dwa_cond1, useNA = "ifany")
#> 
#>    1 
#> 1500
table(datalist[["main"]]$reachableU30, useNA = "ifany")
#> 
#>    0    1 
#> 1246  254
table(datalist[["main"]]$DWA02, useNA = "ifany")
#> 
#>   1   2   3 
#> 497 476 527
table(datalist[["main"]]$dwa_cond2, useNA = "ifany")
#> 
#>    0    1 
#>  426 1074

# Tabulate
table(datalist[["main"]]$dwe01_cat, useNA = "ifany")
#> 
#>    0    1 
#> 1212  288
table(datalist[["main"]]$dwe02_cat, useNA = "ifany")
#> 
#>    0    1 
#>  422 1078
table(datalist[["main"]]$dwe03_cat, useNA = "ifany")
#> 
#>   0   1 
#> 835 665
table(datalist[["main"]]$dwe04_cat, useNA = "ifany")
#> 
#>   0   1 
#> 952 548
table(datalist[["main"]]$dwe05_cat, useNA = "ifany")
#> 
#>    0    1 
#>  258 1242
table(datalist[["main"]]$shelter, useNA = "ifany")
#> 
#>    0    1 
#> 1472   28
#plot
fct_plot_indic_donut(datalist[["main"]]$shelter,
                     iconunicode = "e54f") 

impact2_3

## data, cf example  fct_re_map()
# datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
#                                                  package = "IndicatorCalc"))
# ## Apply calculation
# datalist <- impact2_3(datalist )
# 
# ## Visualise value
# fct_plot_indic_donut(indicator = datalist[["ind"]]$impact2_3,
#                      iconunicode = "f140") 

impact3_2a

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply calculation
datalist <- impact3_2a(datalist  )
#>  EDU01
#>  EDU02
#>  EDU03
#>  EDU04
#>  HH07
table(datalist[["ind"]]$impact3_2a, useNA = "ifany")
#> 
#> 0.717948717948718 
#>              1500
table(datalist[["ind"]]$edu_primary, useNA = "ifany")
#> 
#>    0    1 
#> 1444   56
table(datalist[["ind"]]$age_primary, useNA = "ifany")
#> 
#>    1 <NA> 
#>   78 1422

## Visualise value
fct_plot_indic_donut(indicator = datalist[["ind"]]$impact3_2a,
                     iconunicode = "f140")  

impact3_2b

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply calculation
datalist <- impact3_2b(datalist )
#>  EDU01
#>  EDU02
#>  EDU03
#>  EDU04
#>  HH07

## Visualise value
fct_plot_indic_donut(indicator = datalist[["ind"]]$impact3_2b,
                     iconunicode = "f140")  

impact3_3

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply calculation
datalist <- impact3_3(datalist)
#>  SAF01

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$impact3_3,
                     iconunicode = "f140")   

Outcome indicators

outcome1_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))

## Apply indicator function on datalist
datalist <- outcome1_2(datalist)
#>  REG03
#>  REG04
#>  HH07
table(datalist[["ind"]]$outcome1_2, useNA = "ifany")
#> 
#>    0    1 <NA> 
#>   21   28 1451
table(datalist[["ind"]]$less_than_5, useNA = "ifany")
#> 
#>    0    1 
#> 1438   62
table(datalist[["ind"]]$HH07, useNA = "ifany")
#> 
#>    0   10   11   12   13   14   15   16   17   18   19    2   20   21   22   23 
#>   15   14   18   21   20    7   16   20   18   17   19   13   15   16   11   24 
#>   24   25   26   27   28   29    3   30   31   32   33   34   35   36   37   38 
#>   14   20   13   15   17   18   16   22   17   13   13   15   10   16    9   13 
#>   39    4   40   41   42   43   44   45   46   47   48   49    5   50   51   52 
#>    8   18   19    9   16   11   14   16   19   20   23   11   13   10    9   13 
#>   53   54   55   56   57   58   59    6   60   61   62   63   64   65   66   67 
#>   22   16   16   12   13   13   15   14   13   17   18    8   14   12   20   12 
#>   68   69    7   70   71   72   73   74   75   76   77   78   79    8   80   81 
#>   18   19   14   18   22   13   19   17   16   20   19   18   16   18   16    9 
#>   82   83   84   85   86   87   88   89    9   90   91   92   93   94   95 <NA> 
#>   19   21   18   13   12   23   12   20   18   18   11   18   23   14   12    7
barplot(as.integer(datalist[["ind"]]$HH07))

table(datalist[["ind"]]$birthCertificate, useNA = "ifany")
#> 
#>   0   1 
#> 979 521
table(datalist[["ind"]]$birthRegistered, useNA = "ifany")
#> 
#>    0    1 <NA> 
#>  762  378  360
## Visualise value
fct_plot_indic_donut(indicator = datalist[["ind"]]$outcome1_2,
                     iconunicode = "f140")   

fct_plot_indic_donut(indicator = datalist[["ind"]]$birthCertificate,
                     iconunicode = "f140")   

fct_plot_indic_donut(indicator = datalist[["ind"]]$birthRegistered,
                     iconunicode = "f140")   

outcome1_3

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome1_3(datalist)
#>  REG01a
#>  REG01b
#>  REG01c
#>  REG01d
#>  REG01e
#>  REG01f
#>  REG01g
#>  REG02
#>  REG03
#>  REG05a
#>  REG05b
#>  REG05c
#>  REG05d
#>  REG05e
#>  REG05f
#>  REG06

## Visualise value
fct_plot_indic_donut(indicator = datalist[["ind"]]$outcome1_3,
                     iconunicode = "f140")    


fct_plot_indic_donut(indicator = datalist[["ind"]]$document_above5,
                     iconunicode = "f140")    


fct_plot_indic_donut(indicator = datalist[["ind"]]$document_under5,
                     iconunicode = "f140")    

outcome4_1

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome4_1(datalist )
#>  GBV01a
#>  GBV01b
#>  GBV01c
#>  GBV01d

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome1_4,
                     iconunicode = "f140")   
#> No value was supplied for plotting...

outcome4_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome4_2(datalist)
#>  VAW01a
#>  VAW01b
#>  VAW01c
#>  VAW01d
#>  VAW01e

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome4_2,
                     iconunicode = "f140")   

outcome5_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome5_2(datalist  )
#>  COMM01
#>  COMM02
#>  COMM03
#>  COMM04

## Visualise value
fct_plot_indic_donut(indicator = datalist[["ind"]]$outcome5_2,
                     iconunicode = "f140")   

outcome8_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome8_2(datalist )
#>  COOK01
#>  COOK02 not found in the dataset.
#>  COOK03 not found in the dataset.
#> There are missing data requirement to calculate Indicator Outcome 8.2

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome8_2,
                     iconunicode = "f140")   
#> No value was supplied for plotting...

outcome9_1

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome9_1(datalist)
#>  DWE01
#>  DWE02
#>  DWE03
#>  DWE04
#>  DWE05
#>  DWE08
#>  DWE09
#>  HH01

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome9_1,
                     iconunicode = "f140")   

outcome9_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome9_2(datalist )
#>  LIGHT01
#>  LIGHT02
#>  LIGHT03

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome9_2,
                     iconunicode = "f140")   

outcome10_1

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))

## Apply indicator function on datalist
datalist <- outcome10_1(datalist)
#>  MMR03

## Visualise value
fct_plot_indic_donut(indicator = datalist[["ind"]]$outcome10_1,
                     iconunicode = "f140")   

outcome10_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome10_2(datalist  )
#>  BIR01
#>  BIR02
#>  BIR03
#>  BIR04

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome10_2,
                     iconunicode = "f140")   

outcome12_1

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome12_1(datalist  )
#>  DWA01
#>  DWA02
#>  DWA03a
#>  DWA03b
#>  DWA04

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome12_1,
                     iconunicode = "f140")   

outcome12_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome12_2(datalist)
#>  TOI01
#>  TOI02
#>  TOI03 not found in the dataset.
#>  TOI04 not found in the dataset.
#>  TOI05 not found in the dataset.
#> There are missing data requirement to calculate Indicator Outcome 12.2

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome12_2,
                     iconunicode = "f140")   
#> No value was supplied for plotting...

outcome13_1

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome13_1(datalist )
#>  BANK01
#>  BANK02
#>  BANK03
#>  BANK04
#>  BANK05

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome13_1,
                     iconunicode = "f140")   

outcome13_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome13_2(datalist)
#>  INC01

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome13_2,
                     iconunicode = "f140")   

outcome13_3

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome13_3(datalist )
#>  UNEM01
#>  UNEM02
#>  UNEM03
#>  UNEM04
#>  UNEM05
#>  UNEM06
#>  UNEM07
#>  UNEM08
#>  UNEM09
#>  UNEM10

table( datalist[["main"]]$outcome13_3, useNA = "ifany")
#> 
#>    0    1 <NA> 
#> 1298   51  151
## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome13_3,
                     iconunicode = "f140")   

outcome14_1

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))

## Apply indicator function on datalist
datalist <- outcome14_1(datalist )
#>  REG01a
#>  REG01b
#>  REG01c
#>  REG01d
#>  REG01e
#>  REG01f
#>  REG01g
#>  REG02
#>  REG03
#>  REG04
#>  REG05a
#>  REG05b
#>  REG05c
#>  REG05d
#>  REG05e
#>  REG05f
#>  REG06

## Visualise value
fct_plot_indic_donut(indicator = datalist[["ind"]]$outcome14_1,
                     iconunicode = "f140")   

outcome16_1

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))

## Apply indicator function on datalist
datalist <- outcome16_1(datalist )
#>  DWE06
#>  DWE07
#>  DWE10
#>  DWE11

## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome16_1,
                     iconunicode = "f140")    

outcome16_2

## data, cf example  fct_re_map()
datalist <- kobocruncher::kobo_data( system.file("dummy_RMS_CAPI_v2_mapped.xlsx", 
                                                 package = "IndicatorCalc"))
## Apply indicator function on datalist
datalist <- outcome16_2(datalist)
#>  SPF01a
#>  SPF01b
#>  SPF01c
#>  SPF01d
#>  SPF01e
#>  SPF01f
#>  SPF01g
#>  SPF01h

table( datalist[["main"]]$outcome16_2, useNA = "ifany")
#> 
#>    0    1 
#>   63 1437
## Visualise value
fct_plot_indic_donut(indicator = datalist[["main"]]$outcome16_2,
                     iconunicode = "f140")